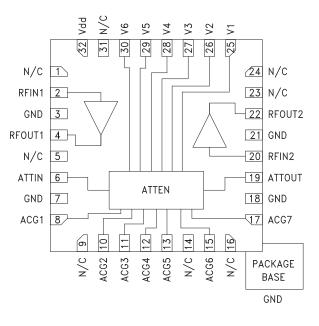


HMC626LP5 / 626LP5E

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL VARIABLE GAIN AMPLIFIER, DC - 1 GHz



Typical Applications

The HMC626LP5(E) is ideal for:

- IF & RF Applications
- Cellular/3G Infrastructure
- WiBro / WiMAX / 4G
- Microwave Radio & VSAT
- Test Equipment and Sensors

Functional Diagram

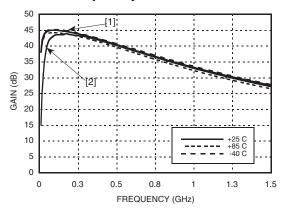
Features

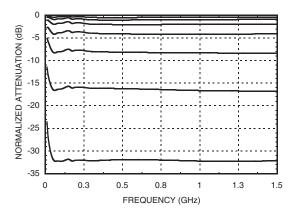
+8.5 dB to +40 dB Gain Control in 0.5 dB Steps High Output IP3: +36 dBm ±0.25 dB Typical Gain Step Error Single +5V Supply 32 Lead 5x5mm SMT Package: 25mm²

General Description

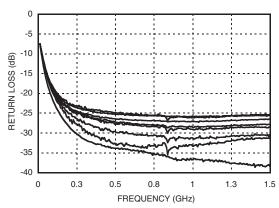
The HMC626LP5(E) is a digitally controlled variable gain amplifier which operates from DC to 1 GHz, and can be programmed to provide anywhere from 8.5 dB, to 40 dB of gain, in 0.5 dB steps. The HMC626LP5(E) delivers noise figure of 4 dB in its maximum gain state, with output IP3 of up to +36 dBm in any state. This single positive control line per bit digital attenuator incorporates off chip AC ground capacitors for near DC operation, making it suitable for a wide variety of RF and IF applications. The HMC626LP5(E) is housed in a RoHS compliant 5x5 mm QFN leadless package, and requires no external matching components.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = Vs = +5V, Vctl = 0/+5V

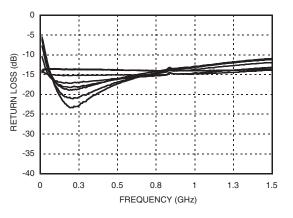

Parameter	Frequency	Min.	Тур.	Max.	Units
Gain (Maximum Gain State)	DC - 0.5 GHz 0.5 - 1.0 GHz	37 30	42.5 35.0		dB dB
Gain Control Range			31.5		dB
Input Return Loss			20		dB
Output Return Loss			15		dB
Attenuation Accuracy: (Referenced to Maximum Gain State) All Attenuation States	0.5 - 1.0 GHz	± (0.15 + 3% of Atten. Setting) Max.		dB	
Output Power for 1 dB Compression	DC - 1.0 GHz		20		dBm
Output Third Order Intercept Point (Two-Tone Input Power= 0 dBm Each Tone)	DC - 1.0 GHz		36		dBm
Noise Figure	DC - 1.0 GHz		4		dB
Switching Characteristics					
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)	DC - 1.0 GHz		130 140		ns ns
Supply Current	DC - 1.0 GHz		176		mA


0.5 dB LSB GaAs MMIC 6-BIT DIGITAL VARIABLE GAIN AMPLIFIER, DC - 1 GHz

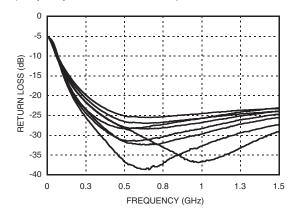
Gain vs. Frequency [1]


Normalized Attenuation

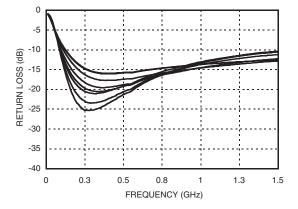
(Only Major States are Shown)


Input Return Loss [1]

(Only Major States are Shown)


Output Return Loss [1]

(Only Major States are Shown)


Input Return Loss [2]

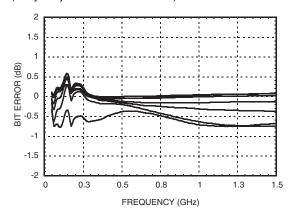
(Only Major States are Shown)

Output Return Loss [2]

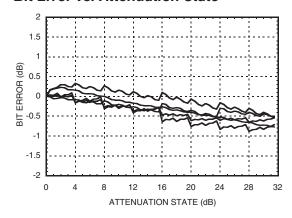
(Only Major States are Shown)

- [1] Tested with broadband bias tee on output J2, C7, C8 = 10,000pF ; L1 = 680 nH
- [2] Data taken on eval board as described in data sheet

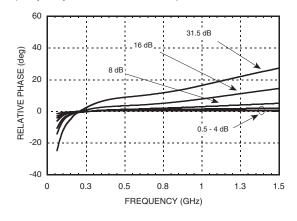
14


HMC626LP5 / 626LP5E

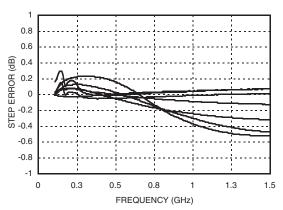
0.5 dB LSB GaAs MMIC 6-BIT DIGITAL VARIABLE GAIN AMPLIFIER, DC - 1 GHz



Bit Error vs. Frequency [2]


(Only Major States are Shown)

Bit Error vs. Attenuation State [2]



Normal Relative Phase vs. Frequency [2] (Only Major States are Shown)

Step Error vs. Frequency [2]

(Only Major States are Shown)

^[1] Tested with broadband bias tee on output J2, C7, C8 = 10,000pF ; L1 = 680nH

^[2] Data taken on eval board as described in data sheet

HMC626LP5 / 626LP5E

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL VARIABLE GAIN AMPLIFIER, DC - 1 GHz

Bias Voltage & Current

Vdd (V)	Idd (Typ.) (mA)	
+4.5	4.7	
+5.0	5.0	
+5.5	5.3	
Vs (V)	Is (mA)	
+5.0	176	

Control Voltage

State	Bias Condition
Low	0 to +0.8 Vdc @ -5 uA Typ.
High	+ 2.0 to + 5.0 Vdc @ 40 uA Typ.
Note: Vdd = +5V	

Truth Table

Control Voltage Input					Gain		
V6	V5	V4	V3	V2	V1	Relative to Maximum Gain	
High	High	High	High	High	High	Reference 0 dB	
High	High	High	High	High	Low	-0.5 dB	
High	High	High	High	Low	High	-1 dB	
High	High	High	Low	High	High	-2 dB	
High	High	Low	High	High	High	-4 dB	
High	Low	High	High	High	High	-8 dB	
Low	High	High	High	High	High	-16 dB	
Low	Low	Low	Low	Low	Low	-31.5 dB	

Any combination of the above states will provide a reduction in gain approximately equal to the sum of the bits selected.

14

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL VARIABLE GAIN AMPLIFIER, DC - 1 GHz

Absolute Maximum Ratings

RF Input Power [1]	12.5 dBm (T = +85 °C)
Bias Voltage (Vdd)	+5.5 Vdc
Collector Bias Voltage (Vcc)	5.5 Vdc
Channel/Junction Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 7.7 mW/°C above 85 °C) [1]	0.593 °C/W
Thermal Resistance	110 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

[1] At max gain settling

Outline Drawing

- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

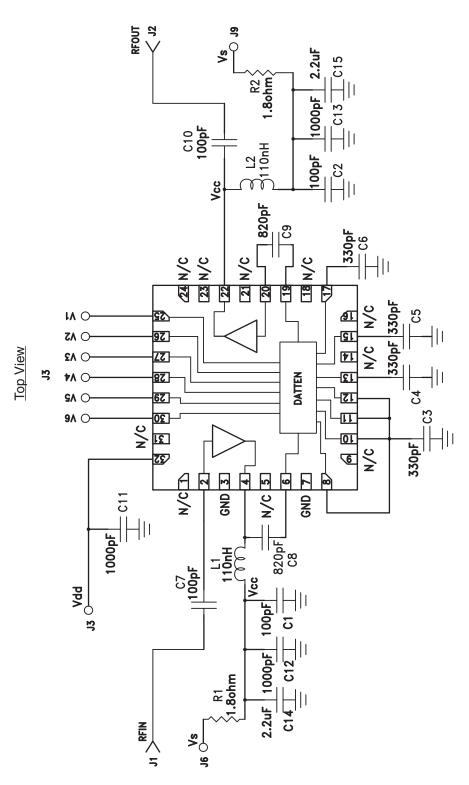
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC626LP5	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H626 XXXX
HMC626LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>H626</u> XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL VARIABLE GAIN AMPLIFIER, DC - 1 GHz

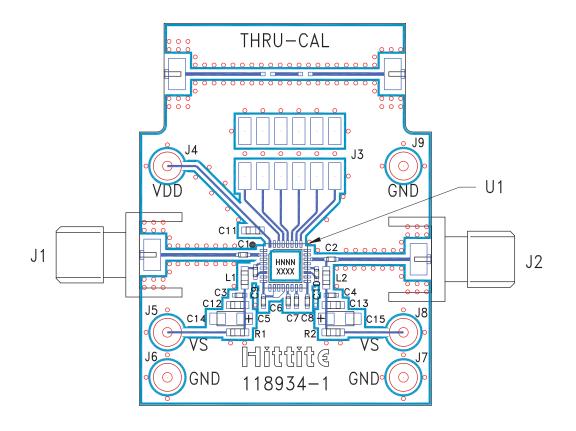
Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 5, 9, 14, 16, 23, 24, 31	N/C	These pins may be connected to RF/DC ground. Performance will not be affected.	
2, 20	AMPIN1, AMPIN2	This pin is DC coupled. An off chip DC blocking capacitor is required. Amplifier bias provided via external bias tee as shown in application circuit.	AMPIN1 AMPOUT1 AMPOUT2
4, 22	AMPOUT1, AMPOUT2	RF output and DC bias (Vcc) for the output stage of the amplifier.	
3, 7, 18, 21	GND	These pins and package bottom must be connected to RF/DC ground.	○ GND =
6, 19	ATTIN, ATTOUT	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required. Select value based on lowest frequency of operation.	ATTIN, O ATTOUT
8, 10, 11, 12, 13, 15, 17	ACG1, ACG2, ACG3, ACG4, ACG5, ACG6, ACG7	External capacitors to ground is required. Select value for lowest frequency of operation. Place capacitor as close to pins as possible.	
25 - 30	V1 - V6	See truth table, control voltage table and timing diagram.	V1-V5 142K 500 =
32	Vdd	Supply voltage	


14

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL VARIABLE GAIN AMPLIFIER, DC - 1 GHz

Application Circuit



0.5 dB LSB GaAs MMIC 6-BIT DIGITAL VARIABLE GAIN AMPLIFIER, DC - 1 GHz

Evaluation PCB

List of Materials for Evaluation PCB 117355 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	12 Pin DC Connector
J4 - J9	DC Pin
C1, C2, C9, C10	820 pF Capacitor, 0402 Pkg.
C3, C4	100 pF Capacitor, 0402 Pkg.
C5 - C8	330 pF Capacitor, 0402 Pkg.
C11 - C13	1000 pF Capacitor, 0402 Pkg.
C14, C15	2.2 μF Capacitor, CASEA Pkg.
R1, R2	1.8 Ohm Resistor, 0603 Pkg.
L1, L2	110 nH Inductor, 0603 Pkg.
U1	HMC626LP5(E) Variable Gain Amplifier
PCB [2]	117354 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB $\,$

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.